Part Number Hot Search : 
56F8027 X7473U M3311 MTP12P06 HAH1340 LTC3525 CTR21 BR2510
Product Description
Full Text Search
 

To Download IRFR4104TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr4104pbf irfu4104pbf hexfet ? power mosfet v dss = 40v r ds(on) = 5.5m ? i d = 42a  www.irf.com 1 this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free features d-pak irfr4104pbf i-pak irfu4104pbf hexfet ? is a registered trademark of international rectifier. absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm p u l se d d ra i n c urrent p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) si n gl e p u l se a va l anc h e e ner gy  mj e as (tested ) si n gl e p u l se a va l anc h e e ner gy t este d v a l ue  i ar a va l anc h e c urrent  a e ar r epet i t i ve a va l anc h e e ner gy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case ??? 1.05 r ja j unct i on-to- a m bi ent (pcb mount )  ??? 40 c/w r ja junction-to-ambient ??? 110 310 145 see fig.12a, 12b, 15, 16 140 0.95 20 max. 119 84 480 42 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) pd - 95425b

 2 www.irf.com electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.032 ??? v/c r ds(on) static drain-to-source on-resistance ??? 4.3 5.5 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 58 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 59 89 q gs gate-to-source charge ??? 19 ??? nc q gd gate-to-drain ("miller") charge ??? 24 ??? t d(on) turn-on delay time ??? 17 ??? t r rise time ??? 69 ??? t d(off) turn-off delay time ??? 37 ??? ns t f fall time ??? 36 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 2950 ??? c oss output capacitance ??? 660 ??? c rss reverse transfer capacitance ??? 370 ??? pf c oss output capacitance ??? 2130 ??? c oss output capacitance ??? 590 ??? c oss eff. effective output capacitance ??? 850 ??? source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 42 (body diode) a i sm pulsed source current ??? ??? 480 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 28 42 ns q rr reverse recovery charge ??? 24 36 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 32v, ? = 1.0mhz v gs = 0v, v ds = 0v to 32v  v gs = 10v  v dd = 20v i d = 42a r g = 6.8 ? t j = 25c, i s = 42a, v gs = 0v  t j = 25c, i f = 42a, v dd = 20v di/dt = 100a/ s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 42a  v ds = v gs , i d = 250a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 10v, i d = 42a i d = 42a v ds = 32v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v    


 
    
    0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v    


 
    
   4 6 8 10 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 20v 60s pulse width t j = 25c t j = 175c 0 20406080100 i d, drain-to-source current (a) 0 20 40 60 80 100 120 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.0 0.5 1.0 1.5 2.0 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080100 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v vds= 20v i d = 42a 0 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 42a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.5067 0.000414 0.5428 0.004081 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri

 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 9.2a 13a bottom 42a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 42a

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets  ?  !  ? "  ?  #$!  %& p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -       '' ? ()""*+  ? '(&,' -  ? !  ""*'./'/ ? ' -  0'(-   v ds 90% 10% v gs t d(on) t r t d(off) t f  ' "12 1 3 '. 0.1 %  '       + -  '' fig 18a. switching time test circuit fig 18b. switching time waveforms

 www.irf.com 9  

  

  
      
   int ernational assembled on ww 16, 2001 in the assembly line "a" or note: "p" in assembly line position example: lot code 1234 t his is an irfr120 wit h as s e mb l y i ndicates "l ead-f r ee" product (optional) p = designates lead-free a = as s e mb l y s i t e code part number week 16 dat e code year 1 = 2001 rectifier internat ional logo lot code as s e mb l y 34 12 irf r120 116a line a 34 rectifier logo irf r120 12 as s e mb l y lot code year 1 = 2001 dat e code part number we e k 16 "p" in ass embly line pos ition indicates "l ead-f r ee" qual ificati on to the cons umer -l evel p = designates lead-free product qualified to t he consumer level (optional) notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/ data/auirfr4104.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/

 10 www.irf.com  
   
      
    
  78 line a logo int ernational rectifier or product (optional) p = d e s i gn at e s l e ad- f r e e a = assembly site code irfu120 part number we e k 1 9 dat e code ye ar 1 = 2001 rect if ier international logo assembly lot code irfu120 56 dat e code part number lot code assembly 56 78 year 1 = 2001 week 19 119a i ndi cates l ead-f r ee" as s embled on ww 19, 2001 in the assembly line "a" note: "p" in as s embly line pos ition example: wit h as s e mb l y t his is an irf u120 lot code 5678 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/ data/auirfr4104.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/

 www.irf.com 11 data and specifications subject to change without notice. this product has been desig ned and qualifi ed for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2010   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.16mh r g = 25 ? , i as = 42a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR4104TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X